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ABSTRACT: Fluorescence resonance energy transfer (FRET)
represents a mechanism to transport light energy at the
nanoscale, as exemplified by nature’s light-harvesting com-
plexes. Here we used DNA origami to arrange fluorophores
that transport excited-state energy from an input dye to an
output dye. We demonstrate that energy-transfer paths can be
controlled on the single-molecule level by the presence of a
“jumper” dye that directs the excited-state energy either to a
red or to an IRoutput dye.Weused single-molecule four-color
FRET with alternating laser excitation to sort subpopulations
and to visualize the control of energy transfer.

The size of photonic components such as fiber optic cables has
hampered the development of light-based circuitry that has the

potential to overcome the limitations of current electronic circuits.
Today, surface plasmon-based photonics (“plasmonics”) is con-
sidered a key technology to bring photonics to the nanoscale and to
overcome the size compatibility problem of optics and electronics.1

For plasmonic circuits, components such as wires, switches, and
connectors are required. Since single emitters can be coupled to
plasmonic devices and induce single plasmons,2 molecular photo-
nic devices such as wires and molecular switches might be included
in nanoscale photonic circuitry and take over some of the desired
functions. With respect to molecules, fluorescence resonance
energy transfer (FRET) offers a means of energy transport that
has led to the development of so-called photonic wires.3-6

Furthermore, functions such as optical switching can be achieved
within single molecules.7,8

In this Communication, we realize a combination of multistep
energy transfer in a photonic wire-like structure using an energy-
transfer cascade,9,10 with the functionality of manipulating the
energy-transfer path. We constructed a two-dimensional arrange-
ment of fluorophores that allows for alternative energy-transfer
pathways dependent on the incorporation of a “jumper” dye at
specific positions. The construct uses two-dimensional DNA
origami as a molecular breadboard that allows the precise and
programmable arrangement of fluorophores in a grid-like fashion
by self-assembly, similar to a circuit board for electronics (see
Figure 1).11 To create the rectangular origami, the∼7.3k bases long
single-stranded DNA genome of phage M13mp18 is folded by
hybridization with ∼200 short synthetic DNA “staple” strands.
Insertion of fluorophores is achieved using dye-modified staple

strands that are incorporated during the self-assembly process (see
Supporting Information for details on DNA sequences, modifica-
tions, and experimental methods).11-13

On this grid we used a “blue” fluorophore (ATTO488) as the
input dye. A “red” fluorophore (ATTO647N) and an “IR”
fluorophore (Alexa 750) are used as alternative output dyes in this
changeover switch-like arrangement (Figure 1). A “green” fluor-
ophore (ATTO565) serves as the jumper dye that can be placed at
two alternative locations, directing the excitation energy either to
the red or to the IR dye (see Figure 1, magnified view). Fluoro-
phores are spread over three helices to minimize fluorophore
interactions through DNA,14,15 and care was taken that fluoro-
phores protrude from the same side of the DNAorigami. Distances
between input and output dyes are of the order of 9 nm tominimize
direct FRET but to enable successive FRET with the aid of the
jumper dye. We constructed origami samples without jumper dye,
with jumper dye to direct the excitation energy to the red output
dye, with jumper dye to direct the energy to the IR output dye, and
with two jumper dyes.

To visualize the alternative energy-transfer paths, we advanced a
previous four-color single-molecule FRET approach with alternat-
ing laser excitation.4,9 This four-color setup allows studying the
interaction between six energy-transfer pairs quasi-simultaneously,

Figure 1. Arrangement of fluorophores on the DNA origami and
visualization of alternative energy-transfer pathways with the “jumper”
dye guiding the light from the blue input to either the red or the IR output.
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with the potential to measure six distances within a biomolecular
complex, and represents an extension of recently developed multi-
color schemes.4,16-21 The setup is based on an inverted confocal
microscope anduses the combination of a supercontinuum laser for
free wavelength selection with acousto-optical filters (AOTFs) and
beamsplitter (AOBS) for excitation alternation and optimized
detection sensitivity on all channels. The problem of decreasing
transmission of theAOBS at longerwavelengths is circumvented by
separating the IR fluorescence with the aid of a dichroic mirror
within the microscope (see Supporting Information for details of
the setup). Alternating laser excitation enables us to directly probe
the stoichiometry of these complex supramolecular constructs by
subsequently exciting all four fluorophores.22

To obtain statistics on the origami constructs, we identified
single-molecule bursts of molecules diffusing through the laser
focus and analyzed them with respect to their stoichiometry and
energy transfer. Four-color alternating laser excitation was used to
probe the presence of the respective fluorophores and to select the
subpopulation of interest exhibiting all incorporated dyes. The
relatively long diffusion times of about 10 ms for the focus transit
allowed collecting an average of ∼500 photons per burst, with
∼100 photons during blue laser excitation. The extensive informa-
tion content of the collected data allows discerning the possible
combinations of fluorophores for every burst. This is important to
exclude incompletely labeled origami structures from FRET anal-
ysis. To further refine the burst selection, ES histograms (energy
transfer plotted versus dye stoichiometry) were used to exclude
molecules where bleaching occurs during diffusion through the
laser focus, which is particularly important for the IR dye. Singly
labeled origami samples were used to determine the correction
factors for leakage (le) into acceptor channels and for direct
excitation (dx) of acceptors (see Supporting Information and
Figure S2 for details on subpopulation selection and analysis).

Interestingly, we found that the blue, green, and red dyes were
incorporated almost quantitatively, with small “donor-only” popu-
lations that can supposedly be assigned to premature bleaching.
These high incorporation yields demonstrate the reliability and
high yield of correctly formed structures of the origami approach.
On the other hand, large fractions of missing IR dyes of >50%were
detected in all samples (see Figure S2). We assign this sample
heterogeneity to an inactive acceptor fraction. Inactive populations
are well known for cyanine dyes such as Cy5 (see, e.g., refs 9 and
23). Notably, Alexa 750 is the only cyanine derivative of the dyes
used.

To quantify the energy transfer toward a given output (red or
IR), FRET-related ratios E* were calculated as a fraction of the
photon counts in the respective output channel divided by the sum
of counts in the input and output channels, all during input dye
excitation (see eqs S12 and S13 in the Supporting Information).
These FRET-related ratios were corrected for direct excitation and
leakage of the dyes, to ensure that, e.g., leaking of the red dye into
the IR channel does not yield a false positive IR signal. On the other
hand, corrections for differing quantum yields or detection effi-
ciencies of the dyes were not taken into account as would be
necessary for absolute distance measurements. Figure 2 shows
histogramsofE* for the energy transfer fromblue to red (left panel)
and from blue to IR (right panel) for all of the designed origami
constructs. Without the jumper dye, energy transfer from the input
to the output dyes is essentially zero, as shown in Figure 2a.

Upon insertion of the jumper dye between the blue and
the red dyes, the FRET-related ratio E*br increases from 0 to
0.34( 0.12, indicating a two-step energy transfer from blue to

red enabled by the green jumper dye (see Figures 1 and 2b). The
mean FRET-related ratio between the blue and IR dyes is
unchanged, and the histogram is slightly broadened due to
reduced photon numbers in the donor detection channel and
larger correction terms in the respective acceptor channel. Alter-
natively, the jumper dye can be inserted between the blue and IR
dyes. This causes the energy transfer to increase from blue to IR
from 0 to E*bir = 0.25( 0.13. Again, the alternative energy-
transfer path remains at a mean value of zero, with a broadened
histogram due to shot noise (Figure 2c). In the case of two
inserted jumper dyes, both FRET-related ratios increase from 0
to E*br = 0.36( 0.17 and E*bir = 0.27( 0.18, respectively.

To quantify the reliability of the readout of the changeover
switch, we characterized the output ratio, defined as the number of
photons in the red output channel divided by the number of
photons in the red and IR output channels, all during blue
excitation and corrected for direct excitation and leakage (see
Figure 3 and eq S17 in the Supporting Information). For the
origami sample with the green jumper dye between the blue and
red dyes, the histogram of the output ratio is centered at 1,
indicating that photons are mainly emitted at the red output. For
the sample with the jumper dye guiding the light toward the IR dye,
the histogram of the output ratio is centered at 0, showing that
photons are mainly emitted at the IR output. Most notably, there is
almost negligible overlap between these two histograms, which are
colored red and brown, respectively, in Figure 3. For an average of
82-122 collected photons during blue excitation for the different
samples and a threshold of 10 photons for the sum of the output
channels, the probability for correct assignment of the jumper
position is >98.5%. For the origami sample with two green jumper
dyes, the output ratio assumes an intermediate value of∼0.5, since
light is emitted equally at both of the outputs.

In summary, our data clearly show that the energy-transfer path
depends on the position of the jumper dye on the origami con-
struct. The jumper dye determines the direction of the energy
transfer, and different output dyes provide an easily read output
signal. DNA origami might hence serve as a circuit board for
photonic devices beyond the diffraction limit down to a molecular

Figure 2. FRET-related ratios from blue to red, E*br, and from blue to
IR, E*bir, for the four different origami samples. For each of the graphs,
the colored spheres indicate the presence of the respective fluorophores on
the DNA origami, and the white sphere marks the absence of the green
jumper dye.
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scale. DNA nanostructures additionally offer ways for integration
with other photonic structures, such as nanoscale plasmonic wave-
guides, since metallic nanoparticles and rods are readily modified
with DNA.24,25 The concept can also be extended to three
dimensions.26 Replacing the jumper strand by sensor strands27

that, for example, report on binding opens interesting possibilities
to exploit the control of energy-transfer paths for nanoscale
sensors or molecular computing. Finally, single-molecule four-
color FRETwith alternating laser excitation has proven valuable to
disentangle biomolecular complexes of increasing complexity.
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Figure 3. Histograms of the output ratios from single molecules. The
number of photons in the red output channel divided by the number of
photons in the red and IR output channels (all during blue excitation) are
plotted for the three origami samples with jumper dyes. The fluorophore
arrangement is indicated schematically above each of the histograms.
Values exceeding the range of 0-1 are due to correction factors (see eq S17
in the Supporting Information).


